

International Oil and Ice Workshop

Anchorage, Alaska October 10 -11, 2007

Sponsored by: ACS, Alaska DEC, Cook Inlet Spill Response Inc., Oil Spill Recovery Institute, USCG, U.S. MMS

Organized by: S.L. Ross Environmental Research and DF Dickins and Associates

FESCO Sakhalin

Dekastrie SPM

ExonMobil Upstream Research

Sakhalin Ice Conditions

AVHRR satellite image April 7, 1999 Island length = 950 km

Sakhalin Tanker Trials

Sakhalin Ice Floe

Why focus on "remotely applied" response options?

remotely applied options

Four broad options for oil-spill response in both ice and open water

- **Observation only**
- Mechanical recovery
- In situ burning
- **Dispersants**

Rope mop skimmer

Mechanical response is challenged by ice

Background – Initial Research Focus

Dispersants

- Show that dispersants can work in ice
 - Ice motion enhanced dispersion
- Limitations: oil viscosity / mixing energy

In situ burning

- Ice can provide containment
 - Can burn in all ice conditions
 - Can burn emulsions
- Limitations: slick thickness / weathering

Chemical dispersion of oil in ice at OHMSETT—ice motion enhanced dispersion

1983 Test burn effective in concentrated ice

2002 Tests studied limits to ISB in ice

New Dispersant Gel

OHMSETT Wave Tank

9500 immediately after application

Gel clearly visible on slick

New formula

Advantages

- May triple delivery capacity
- Allows dispersion of viscous oil
- Reduces spray drift
- Visible after application
- Buoyant, cohesive drops

New Dispersant Gel

New Formula Dispersed the Prestige Oil

C9500 New Gel

C9500 New Gel

Icebreaker Enhanced Dispersion

Upstream Research

Chemical Dispersion Enhanced by Icebreaker Prop Wash

Azimuthal Stern Drive Icebreaker

Completed positive basin tests

Diversion Boom Concept

EXONMODIIUpstream Research

Extending the Prop-wash Concept to Vessels of Opportunity and Lower Ice / Open Water

Three Vessels of Opportunity and Two Booms

Two Vessels of Opportunity and One Boom

Completed basin tests using 1:25 scale workboat

ExonMobil ests *Upstream Research*

Restricted Spreading Biases Dispersant Effectiveness Tests

- Closed systems keep slicks from spreading
 - Beaker and basin walls
 - Oil containment systems
- Surfactants on water surface keep slicks from spreading
- Surfactants cover all surfaces after dispersant application
 - Overspray onto adjacent water
 - Migration from oil
- Restricted spreading increases the amount of energy required for dispersion
 - Not an issue for conventional oils with adequate mixing
 - Negatively biases dispersants effectiveness with
 - + Low energy conditions
 - + Viscous oils

In situ Burning Enhanced using Chemical Herders

Led joint-industry project evaluating herders

Chemical herders may extend in situ burning to lower ice concentrations

Enhance in situ burning using chemical herders

Lab-scale tests

Remote Sensing of Oil Under Ice

Upstream Research

- Enhancing remote detection of oil under ice is an important need
- NMR is the only technique to characterize water aquifers remotely
- Relatively simple instrument that utilizes Earth's magnetic field
- Ice is virtually invisible to the instrument

Utilize nuclear magnetic resonance in the Earth's magnetic field

Summary

Our findings indicate

- Dispersants work in ice given enough mixing energy
- EM's new dispersant gel allows more efficient use of dispersants—may triple capacity and allow treatment of cold/viscous oil
- ASD Ice breakers and EM's diversion-boom concept effectively supply mixing energy if needed
- Standard tests may bias dispersant effectiveness tests particularly for challenging conditions
- In-situ burning is effective if ice containment is sufficient
- Chemical herders extend in-situ burning to lower ice conditions
- New remote detection concept using NMR may close important gap

ExxonMobil Research on Remotely Applied Response Options for Spills in Dynamic Ice

The End